
Preliminary Comments

ShibaDoge
Jan 12th, 2022



Table of Contents
Summary

Overview
Project Summary

Audit Summary

Vulnerability Summary

Audit Scope

Findings
GLOBAL-01 : Centralization Risk

GLOBAL-02 : Third Party Dependencies

GLOBAL-03 : Financial Model

GLOBAL-04 : Unlocked Compiler Version

GLOBAL-05 : Function Visibility Optimization

GLOBAL-06 : Missing Emit Events

GLOBAL-07 : Inconsistent Integer Types

SDS-01 : Token Minted To Centralized Address

SDS-02 : Contract gains non-withdrawable ETH via the `swapAndLiquify` function

SDS-03 : Centralized Risk In `swapAndLiquify`

SDS-04 : Potential Sandwich Attacks

SDS-05 : Miscalculation of Max Holding

SDS-06 : Variables Could Be Declared `Constant` or `Immutable`

SDS-07 : Unused Event

SDS-08 : Missing Input Validation

SDS-09 : Typos in the contract

SDS-10 : Error Require Message

SDS-11 : Hardcode Decimal

SDS-12 : Redundant code

SDS-13 : Return value not handled

SDS-14 : The purpose of function `deliver`

Appendix

Disclaimer

About

ShibaDoge Preliminary CommentsShibaDoge Preliminary Comments



Summary
This report has been prepared for ShibaDoge to discover issues and vulnerabilities in the source code of

the ShibaDoge project as well as any contract dependencies that were not part of an officially recognized

library. A comprehensive examination has been performed, utilizing Static Analysis and Manual Review

techniques.

The auditing process pays special attention to the following considerations:

Testing the smart contracts against both common and uncommon attack vectors.

Assessing the codebase to ensure compliance with current best practices and industry standards.

Ensuring contract logic meets the specifications and intentions of the client.

Cross referencing contract structure and implementation against similar smart contracts produced

by industry leaders.

Thorough line-by-line manual review of the entire codebase by industry experts.

Additionally, this audit is based on a premise that all external contracts were implemented safely.

The security assessment resulted in findings that ranged from critical to informational. We recommend

addressing these findings to ensure a high level of security standards and industry practices.
We suggest

recommendations that could better serve the project from the security perspective:

Enhance general coding practices for better structures of source codes;

Add enough unit tests to cover the possible use cases;

Provide more comments per each function for readability, especially contracts that are verified in

public;

Provide more transparency on privileged activities once the protocol is live.

ShibaDoge Preliminary Comments



Overview

Project Summary

Project Name ShibaDoge

Platform ethereum

Language Solidity

Codebase https://etherscan.io/address/0x6ADb2E268de2aA1aBF6578E4a8119b960E02928F#code

Commit

Audit Summary

Delivery Date Jan 12, 2022

Audit Methodology Static Analysis, Manual Review

Vulnerability Summary

Vulnerability Level Total Pending Declined Acknowledged Partially Resolved Resolved

Critical 0 0 0 0 0 0

Major 4 4 0 0 0 0

Medium 0 0 0 0 0 0

Minor 4 4 0 0 0 0

Informational 12 12 0 0 0 0

Discussion 1 1 0 0 0 0

ShibaDoge Preliminary Comments

https://etherscan.io/address/0x6ADb2E268de2aA1aBF6578E4a8119b960E02928F#code


Audit Scope

ID File SHA256 Checksum

SDS ShibaDoge.sol a9c9365e457e11e1a09601ad3e5731b57cbb7dc72136bd9d604a8f90f26ea051

ShibaDoge Preliminary Comments



Understandings

Overview

ShibaDoge  is a deflationary token contract, the token in the contract is ShibDoge . The contract uses

_rOwned  and _tOwned  to record the user's account balance, where _rOwned  is used to calculate

dividends, and _tOwned  records the user's token balance.

When transfer, if the contract account balance exceeds the set value of numTokensSellToAddToLiquidity ,

the swapAndLiquify  operation will be executed. First, the token of the contract account balance will be

divided according to a certain ratio, one part will be converted into ETH (one part will be used to add

liquidity, the other part will be transferred to the _marketingAddress  address and _devwallet ), and the

other part will be used to add liquidity. The lp will be sent to address(this) .

If one of the both parties to the transaction are in the fee exclusion list, then the transaction is free of

charge. In addition, there is a special case: transfer from to to is also free of charge. Otherwise, the

transaction fee is set according to the specific circumstances of buy or sell(47% liquidity fee and 48%

marketing fee). The specific fee can be set in the contract.

Privileged Functions

The contract contains the following privileged functions that are restricted by some modifiers. They are

used to modify the contract configurations and address attributes. We grouped these functions below:

The onlyOwner modifier:

Contract Ownable :

renounceOwnership()

transferOwnership(address newOwner)

lock(uint256 time)

Contract ShibaDoge :

updateMarketingWallet(address payable newAddress)

updateDevWallet(address payable newAddress)

updateExchangeWallet(address newAddress)

updatePartnershipsWallet(address newAddress)

addBotToBlacklist(address account)

removeBotFromBlacklist(address account)

ShibaDoge Preliminary Comments



excludeFromReward(address account)

includeInReward(address account)

excludeFromFee(address account)

includeInFee(address account)

excludeFromLimit(address account)

includeInLimit(address account)

setSellFee(
uint16 tax,
uint16 liquidity,
uint16 marketing,
uint16 dev,
uint16 donation
)

setBuyFee(
uint16 tax,
uint16 liquidity,
uint16 marketing,
uint16 dev,
uint16 donation
)

setBothFees(
uint16 buy_tax,
uint16 buy_liquidity,
uint16 buy_marketing,
uint16 buy_dev,
uint16

buy_donation,
uint16 sell_tax,
uint16 sell_liquidity,
uint16 sell_marketing,
uint16 sell_dev,
uint16

sell_donation
)

setNumTokensSellToAddToLiquidity(uint256 numTokens)

setMaxTxPercent(uint256 maxTxPercent)

_setMaxWalletSizePercent(uint256 maxWalletSize)

setSwapAndLiquifyEnabled(bool _enabled)

ShibaDoge Preliminary Comments



Findings

ID Title Category Severity Status

GLOBAL-01 Centralization Risk
Centralization /

Privilege
Major Pending

GLOBAL-02 Third Party Dependencies Volatile Code Minor Pending

GLOBAL-03 Financial Model Logical Issue Minor Pending

GLOBAL-04 Unlocked Compiler Version Language Specific Informational Pending

GLOBAL-05 Function Visibility Optimization Gas Optimization Informational Pending

GLOBAL-06 Missing Emit Events Coding Style Informational Pending

GLOBAL-07 Inconsistent Integer Types Coding Style Informational Pending

SDS-01 Token Minted To Centralized Address Logical Issue Major Pending

SDS-02
Contract gains non-withdrawable ETH via the

swapAndLiquify  function
Logical Issue Major Pending

SDS-03 Centralized Risk In swapAndLiquify
Centralization /

Privilege
Major Pending

SDS-04 Potential Sandwich Attacks Logical Issue Minor Pending

SDS-05 Miscalculation of Max Holding
Mathematical

Operations
Minor Pending

SDS-06
Variables Could Be Declared Constant  or

Immutable
Gas Optimization Informational Pending

ShibaDoge Preliminary Comments

21
Total Issues

Critical 0 (0.00%)

Major 4 (19.05%)

Medium 0 (0.00%)

Minor 4 (19.05%)

Informational 12 (57.14%)

Discussion 1 (4.76%)



ID Title Category Severity Status

SDS-07 Unused Event Coding Style Informational Pending

SDS-08 Missing Input Validation Logical Issue Informational Pending

SDS-09 Typos in the contract Coding Style Informational Pending

SDS-10 Error Require Message Coding Style Informational Pending

SDS-11 Hardcode Decimal Coding Style Informational Pending

SDS-12 Redundant code Logical Issue Informational Pending

SDS-13 Return value not handled Volatile Code Informational Pending

SDS-14 The purpose of function deliver Control Flow Discussion Pending

ShibaDoge Preliminary Comments



GLOBAL-01 | Centralization Risk

Category Severity Location Status

Centralization / Privilege Major Global Pending

Description

In the contract Ownable , the role owner  has the authority over the following function:

renounceOwnership()

transferOwnership()

lock()

In the contract ShibaDoge , the role owner  has the authority over the following function:

updateMarketingWallet()

updateDevWallet()

updateExchangeWallet()

updatePartnershipsWallet()

addBotToBlacklist()

removeBotFromBlacklist()

excludeFromReward()

includeInReward()

excludeFromFee()

includeInFee()

excludeFromLimit()

includeInLimit()

setSellFee()

setBuyFee()

setBothFees()

setNumTokensSellToAddToLiquidity()

setMaxTxPercent()

_setMaxWalletSizePercent()

setSwapAndLiquifyEnabled()

Additionally, all tokens will be minted to the deployer account.

Any compromise to these accounts may allow the hacker to manipulate the project through these

functions.

ShibaDoge Preliminary Comments



Recommendation

The risk describes the current project design and potentially makes iterations to improve in the security

operation and level of decentralization, which in most cases cannot be resolved entirely at the present

stage. We advise the client to carefully manage the privileged account's private key to avoid any potential

risks of being hacked. In general, we strongly recommend centralized privileges or roles in the protocol be

improved via a decentralized mechanism or smart-contract-based accounts with enhanced security

practices, e.g., multi-signature wallets.

Indicatively, here are some feasible suggestions that would also mitigate the potential risk at a different

level in terms of short-term, long-term and permanent:

Short Term:

Timelock and Multi sign (⅔, ⅗) combination mitigate by delaying the sensitive operation and avoiding a

single point of key management failure.

Time-lock with reasonable latency, e.g., 48 hours, for awareness on privileged operations;



AND

Assignment of privileged roles to multi-signature wallets to prevent a single point of failure due to the

private key compromised;



AND

A medium/blog link for sharing the timelock contract and multi-signers addresses information with

the public audience.

Long Term:

Timelock and DAO, the combination, mitigate by applying decentralization and transparency.

Time-lock with reasonable latency, e.g., 48 hours, for awareness on privileged operations;



AND

Introduction of a DAO/governance/voting module to increase transparency and user involvement.



AND

A medium/blog link for sharing the timelock contract, multi-signers addresses, and DAO information

with the public audience.

Permanent:

Renouncing the ownership or removing the function can be considered fully resolved.

Renounce the ownership and never claim back the privileged roles.
OR

ShibaDoge Preliminary Comments



Remove the risky functionality.

ShibaDoge Preliminary Comments



GLOBAL-02 | Third Party Dependencies

Category Severity Location Status

Volatile Code Minor Global Pending

Description

The scope of the audit treats 3rd party entities as black boxes and assumes their functional correctness.

However, in the real world, 3rd parties can be compromised and this may lead to lost or stolen assets. In

addition, upgrades of 3rd parties can possibly create severe impacts, such as increasing fees of 3rd

parties, migrating to new LP pools, etc.

Recommendation

We encourage the team to constantly monitor the statuses of 3rd parties to mitigate the side effects when

unexpected activities are observed.

ShibaDoge Preliminary Comments



GLOBAL-03 | Financial Model

Category Severity Location Status

Logical Issue Minor Global Pending

Description

When transfer, if one of the both parties to the transaction are in the fee exclusion list, then the transaction

is free of charge. In addition, there is a special case: transfer from to to is also free of charge. Otherwise,

the transaction fee is set according to the specific circumstances of buy or sell(47% liquidity fee and 48%

marketing fee).

If the contract account balance exceeds the set value of numTokensSellToAddToLiquidity , the

swapAndLiquify  operation will be executed. First, the token of the contract account balance will be

divided according to a certain ratio, one part will be converted into ETH (one part will be used to add

liquidity, the other part will be transferred to the _marketingAddress  address and _devwallet ), and the

other part will be used to add liquidity. The lp will be sent to address(this) .

Recommendation

We recommend to publish this feature to the community.

ShibaDoge Preliminary Comments



GLOBAL-04 | Unlocked Compiler Version

Category Severity Location Status

Language Specific Informational Global Pending

Description

The following contracts have unlocked compiler versions. An unlocked compiler version in the source code

of the contract permits the user to compile it at or above a particular version. This, in turn, leads to

differences in the generated bytecode between compilations due to differing compiler version numbers.

This can lead to ambiguity when debugging as compiler specific bugs may occur in the codebase that

would be difficult to identify over a span of multiple compiler versions rather than a specific one.

ShibaDoge.sol

Recommendation

We advise that the compiler version is alternatively locked at the lowest version possible that the contract

can be compiled at. For example, for version v0.6.2  the contract should contain the following line:

pragma solidity 0.6.2;pragma solidity 0.6.2;

ShibaDoge Preliminary Comments



GLOBAL-05 | Function Visibility Optimization

Category Severity Location Status

Gas Optimization Informational Global Pending

Description

The following functions are declared as public  and are not invoked in any of the contracts contained

within the project's scope. The functions that are never called internally within the contract should have

external visibility.

contract Ownable

renounceOwnership()  in L510

transferOwnership()  in L519

lock()  in L533

unlock()  in L541

contract ShibaDoge

transfer()  in L1059

approve()  in L1077

transferFrom()  in L1086

increaseAllowance()  in L1103

decreaseAllowance()  in L1116

deliver()  in L1144

excludeFromReward()  in L1256

excludeFromFee()  in L1278

includeInFee()  in L1282

excludeFromLimit()  in L1286

includeInLimit()  in L1290

setSwapAndLiquifyEnabled()  in L1363

Recommendation

We advise that the functions' visibility specifiers are set to external  and the array-based arguments

change their data location from memory  to calldata , optimizing the gas cost of the function.

ShibaDoge Preliminary Comments



GLOBAL-06 | Missing Emit Events

Category Severity Location Status

Coding Style Informational Global Pending

Description

The function that affects the status of sensitive variables should be able to emit events as notifications to

customers.

contract ShibaDoge

deliver()

updateMarketingWallet()

updateDevWallet()

updateExchangeWallet()

updatePartnershipsWallet()

addBotToBlacklist()

removeBotFromBlacklist()

excludeFromReward()

includeInReward()

excludeFromFee()

includeInFee()

excludeFromLimit()

includeInLimit()

setSellFee()

setBuyFee()

setBothFees()

setNumTokensSellToAddToLiquidity()

setMaxTxPercent()

_setMaxWalletSizePercent()

Recommendation

We advise the client to add events for sensitive actions, and emit them in the function.

ShibaDoge Preliminary Comments



GLOBAL-07 | Inconsistent Integer Types

Category Severity Location Status

Coding Style Informational Global Pending

Description

The definition type of buyFee  and sellFee  is uint8 , and contract-related operations use uint256  to

receive calculation results.

Recommendation

We recommend using the uniform int type in contract and using SafeMath  for math operations.

ShibaDoge Preliminary Comments



SDS-01 | Token Minted To Centralized Address

Category Severity Location Status

Logical Issue Major ShibaDoge.sol: 996 Pending

Description

The number of tokens that are minted to the centralized address, may raise the community's concerns

about the centralization issue.

Recommendation

The risk describes the current project design and potentially makes iterations to improve in the security

operation and level of decentralization, which in most cases cannot be resolved entirely at the present

stage. We advise the client to carefully manage the privileged account's private key to avoid any potential

risks of being hacked. In general, we strongly recommend centralized privileges or roles in the protocol be

improved via a decentralized mechanism or smart-contract-based accounts with enhanced security

practices, e.g., multi-signature wallets.

Indicatively, here are some feasible suggestions that would also mitigate the potential risk at a different

level in terms of short-term, long-term and permanent:

Short Term:

Timelock and Multi sign (⅔, ⅗) combination mitigate by delaying the sensitive operation and avoiding a

single point of key management failure.

Time-lock with reasonable latency, e.g., 48 hours, for awareness on privileged operations;



AND

Assignment of privileged roles to multi-signature wallets to prevent a single point of failure due to the

private key compromised;



AND

A medium/blog link for sharing the timelock contract and multi-signers addresses information with

the public audience.

Long Term:

Timelock and DAO, the combination, mitigate by applying decentralization and transparency.

ShibaDoge Preliminary Comments



Time-lock with reasonable latency, e.g., 48 hours, for awareness on privileged operations;

AND

Introduction of a DAO/governance/voting module to increase transparency and user involvement.



AND

A medium/blog link for sharing the timelock contract, multi-signers addresses, and DAO information

with the public audience.

Permanent:

Renouncing the ownership or removing the function can be considered fully resolved.

Renounce the ownership and never claim back the privileged roles.
OR

Remove the risky functionality.

ShibaDoge Preliminary Comments



SDS-02 | Contract gains non-withdrawable ETH via the swapAndLiquify

function

Category Severity Location Status

Logical Issue Major ShibaDoge.sol: 1611 Pending

Description

The swapAndLiquify  function converts half of the contractTokenBalance  ShibaDoge tokens to ETH. The

other half of ShibaDoge tokens and part of the converted ETH are deposited into the ShibaDoge-ETH pool

on uniswap as liquidity. For every swapAndLiquify  function call, a small amount of ETH leftover in the

contract. This is because the price of ShibaDoge drops after swapping the first half of ShibaDoge tokens

into ETHs, and the other half of ShibaDoge tokens require less than the converted ETH to be paired with it

when adding liquidity. The contract doesn't appear to provide a way to withdraw those ETH, and they will

be locked in the contract forever.

Recommendation

It's not ideal that more and more ETH are locked into the contract over time. The simplest solution is to

add a withdraw  function in the contract to withdraw ETH. Other approaches that benefit the SafeMoon

token holders can be:

Distribute ETH to ShibaDoge token holders proportional to the amount of token they hold.

Use leftover ETH to buy back ShibaDoge tokens from the market to increase the price of

ShibaDoge.

ShibaDoge Preliminary Comments



SDS-03 | Centralized Risk In swapAndLiquify

Category Severity Location Status

Centralization / Privilege Major ShibaDoge.sol: 1611 Pending

Description

In transactions, the linked statements may be called and ETH  owned by the contract is transferred to the

centralized addresses _marketingAddress  and _devwallet . As a result, over time the addresses will

accumulate a significant portion of ETH . If the addresses are EOAs (Externally Owned Account),

mishandling of its private key can have devastating consequences to the project as a whole.

Recommendation

The risk describes the current project design and potentially makes iterations to improve in the security

operation and level of decentralization, which in most cases cannot be resolved entirely at the present

stage. We advise the client to carefully manage the privileged account's private key to avoid any potential

risks of being hacked. In general, we strongly recommend centralized privileges or roles in the protocol be

improved via a decentralized mechanism or smart-contract-based accounts with enhanced security

practices, e.g., multi-signature wallets.

Indicatively, here are some feasible suggestions that would also mitigate the potential risk at a different

level in terms of short-term, long-term and permanent:

Short Term:

Timelock and Multi sign (⅔, ⅗) combination mitigate by delaying the sensitive operation and avoiding a

single point of key management failure.

Time-lock with reasonable latency, e.g., 48 hours, for awareness on privileged operations;



AND

Assignment of privileged roles to multi-signature wallets to prevent a single point of failure due to the

private key compromised;



AND

A medium/blog link for sharing the timelock contract and multi-signers addresses information with

the public audience.

Long Term:

ShibaDoge Preliminary Comments



Timelock and DAO, the combination, mitigate by applying decentralization and transparency.

Time-lock with reasonable latency, e.g., 48 hours, for awareness on privileged operations;



AND

Introduction of a DAO/governance/voting module to increase transparency and user involvement.



AND

A medium/blog link for sharing the timelock contract, multi-signers addresses, and DAO information

with the public audience.

Permanent:

Renouncing the ownership or removing the function can be considered fully resolved.

Renounce the ownership and never claim back the privileged roles.
OR

Remove the risky functionality.

ShibaDoge Preliminary Comments



SDS-04 | Potential Sandwich Attacks

Category Severity Location Status

Logical Issue Minor ShibaDoge.sol: 1665~1671, 1679~1686 Pending

Description

A sandwich attack might happen when an attacker observes a transaction swapping tokens or adding

liquidity without setting restrictions on slippage or minimum output amount. The attacker can manipulate

the exchange rate by frontrunning (before the transaction being attacked) a transaction to purchase one of

the assets and make profits by backrunning (after the transaction being attacked) a transaction to sell the

asset.

The following functions are called without setting restrictions on slippage or minimum output amount, so

transactions triggering these functions are vulnerable to sandwich attacks, especially when the input

amount is large:

swapTokensForEth()

addLiquidity()

Recommendation

We recommend setting reasonable minimum output amounts, instead of 0, based on token prices when

calling the aforementioned functions.

ShibaDoge Preliminary Comments



SDS-05 | Miscalculation of Max Holding

Category Severity Location Status

Mathematical Operations Minor ShibaDoge.sol: 1600 Pending

Description

The transaction may be charged fees, so the max holding of receiver should be balanceOf(to) +

transferAmount . The fees should not be calculated in the max holding.

Recommendation

We recommend the client to fix this problem by checking max holding without including fees.

ShibaDoge Preliminary Comments



SDS-06 | Variables Could Be Declared Constant or Immutable

Category Severity Location Status

Gas Optimization Informational ShibaDoge.sol: 924, 939, 940, 941 Pending

Description

Variables _tTotal , _name , _symbol  and _decimals  could be declared as constant  since these state

variables are never to be changed.

Recommendation

We recommend declaring those variables as constant .

ShibaDoge Preliminary Comments



SDS-07 | Unused Event

Category Severity Location Status

Coding Style Informational ShibaDoge.sol: 978, 979, 981, 983 Pending

Description

The following events are declared but never used:

botAddedToBlacklist

botRemovedFromBlacklist

MinTokensBeforeSwapUpdated

SwapAndLiquify

Recommendation

We recommend removing these events or emitting them in the right places.

ShibaDoge Preliminary Comments



SDS-08 | Missing Input Validation

Category Severity Location Status

Logical

Issue
Informational

ShibaDoge.sol: 1216, 1220, 1224, 1228, 1294, 1308, 1322, 1348, 1352, 

1611
Pending

Description

The given input is missing the sanity check.

Recommendation

We advise adding the check for the passed-in values to prevent unexpected error as below:

1. updateMarketingWallet():

requirerequire((newAddress newAddress !=!=  addressaddress((00)),,  "newAddress can not be zero address.""newAddress can not be zero address."));;

2. updateDevWallet():

requirerequire((newAddress newAddress !=!=  addressaddress((00)),,  "newAddress can not be zero address.""newAddress can not be zero address."));;

3. updateExchangeWallet():

requirerequire((newAddress newAddress !=!=  addressaddress((00)),,  "newAddress can not be zero address.""newAddress can not be zero address."));;

4. updatePartnershipsWallet():

requirerequire((newAddress newAddress !=!=  addressaddress((00)),,  "newAddress can not be zero address.""newAddress can not be zero address."));;

5. The initial liquidity  fee and marketing  fee are too high, we recommend to set reasonable values

for those fees in setSellFee()、setBuyFee()  and setBothFees() .

6. setNumTokensSellToAddToLiquidity():

requirerequire((numTokens numTokens << _tTotal _tTotal,,  "numTokens must be less than _tTotal.""numTokens must be less than _tTotal."));;

ShibaDoge Preliminary Comments



7. setMaxTxPercent():

requirerequire((maxTxPercent maxTxPercent <<  10001000,,  "maxTxPercent must be less than 1000.""maxTxPercent must be less than 1000."));;

8. swapAndLiquify():

requirerequire((denominator denominator >>  00,,  "denominator must be greater than 0.""denominator must be greater than 0."));;

ShibaDoge Preliminary Comments



SDS-09 | Typos in the contract

Category Severity Location Status

Coding Style Informational ShibaDoge.sol: 1368 Pending

Description

recieve  should be receive  in the line of comment //to recieve ETH from uniswapV2Router when

swapping .

Recommendation

We recommend correcting all typos in the contract.

ShibaDoge Preliminary Comments



SDS-10 | Error Require Message

Category Severity Location Status

Coding Style Informational ShibaDoge.sol: 1558, 1559 Pending

Description

The judgment condition does not match the message.

Recommendation

We advise refactoring the linked codes as below:

15581558 requirerequire((!!_isBlackListedBot_isBlackListedBot[[fromfrom]],,  "from is blacklisted""from is blacklisted"));;


15591559 requirerequire((!!_isBlackListedBot_isBlackListedBot[[msgmsg..sendersender]],,  "you are blacklisted""you are blacklisted"));;

ShibaDoge Preliminary Comments



SDS-11 | Hardcode Decimal

Category Severity Location Status

Coding Style Informational ShibaDoge.sol: 924, 974, 975, 976 Pending

Description

The constant state variable _decimals , at L941, does not be used at the linked statements.

Recommendation

We advise replacing 9  with _decimals  at the linked statements.

ShibaDoge Preliminary Comments



SDS-12 | Redundant code

Category Severity Location Status

Logical Issue Informational ShibaDoge.sol: 1710~1712 Pending

Description

The condition !_isExcluded[sender] && !_isExcluded[recipient]  can be included in else  .

Recommendation

The following code can be removed:

11 ......  elseelse  ifif  ((!!_isExcluded_isExcluded[[sendersender]]  &&&&  !!_isExcluded_isExcluded[[recipientrecipient]]))  {{


22         _transferStandard_transferStandard((sendersender,, recipient recipient,, amount amount));;


33 }}  ......

ShibaDoge Preliminary Comments



SDS-13 | Return value not handled

Category Severity Location Status

Volatile Code Informational ShibaDoge.sol: 1679~1686 Pending

Description

The return values of function addLiquidityETH  are not properly handled.

16791679 uniswapV2RouteruniswapV2Router..addLiquidityETHaddLiquidityETH{{valuevalue:: ethAmount ethAmount}}((


16801680         addressaddress((thisthis)),,


16811681     tokenAmount    tokenAmount,,


16821682         00,,  // slippage is unavoidable// slippage is unavoidable


16831683         00,,  // slippage is unavoidable// slippage is unavoidable


16841684         addressaddress((thisthis)),,


16851685     block    block..timestamptimestamp


16861686 ));;

Recommendation

We recommend using variables to receive the return value of the functions mentioned above and handle

both success and failure cases if needed by the business logic.

ShibaDoge Preliminary Comments



SDS-14 | The purpose of function deliver

Category Severity Location Status

Control Flow Discussion ShibaDoge.sol: 1144 Pending

Description

The function deliver  can be called by anyone. It accepts an uint256 number parameter tAmount . The

function reduces the token balance of the caller by rAmount , which is tAmount  reduces the transaction

fee. Then, the function adds tAmount  to variable _tFeeTotal , which represents the contract's total

transaction fee. We wish the team could explain more on the purpose of having such functionality.

ShibaDoge Preliminary Comments



Appendix

Finding Categories

Centralization / Privilege

Centralization / Privilege findings refer to either feature logic or implementation of components that act

against the nature of decentralization, such as explicit ownership or specialized access roles in

combination with a mechanism to relocate funds.

Gas Optimization

Gas Optimization findings do not affect the functionality of the code but generate different, more optimal

EVM opcodes resulting in a reduction on the total gas cost of a transaction.

Mathematical Operations

Mathematical Operation findings relate to mishandling of math formulas, such as overflows, incorrect

operations etc.

Logical Issue

Logical Issue findings detail a fault in the logic of the linked code, such as an incorrect notion on how

block.timestamp works.

Control Flow

Control Flow findings concern the access control imposed on functions, such as owner-only functions

being invoke-able by anyone under certain circumstances.

Volatile Code

Volatile Code findings refer to segments of code that behave unexpectedly on certain edge cases that may

result in a vulnerability.

Language Specific

Language Specific findings are issues that would only arise within Solidity, i.e. incorrect usage of private or

delete.

Coding Style

ShibaDoge Preliminary Comments



Coding Style findings usually do not affect the generated byte-code but rather comment on how to make

the codebase more legible and, as a result, easily maintainable.

Checksum Calculation Method

The "Checksum" field in the "Audit Scope" section is calculated as the SHA-256 (Secure Hash Algorithm 2

with digest size of 256 bits) digest of the content of each file hosted in the listed source repository under

the specified commit.

The result is hexadecimal encoded and is the same as the output of the Linux "sha256sum" command

against the target file.

ShibaDoge Preliminary Comments



Disclaimer
This report is subject to the terms and conditions (including without limitation, description of services,

confidentiality, disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of

services, and terms and conditions provided to you (“Customer” or the “Company”) in connection with the

Agreement. This report provided in connection with the Services set forth in the Agreement shall be used

by the Company only to the extent permitted under the terms and conditions set forth in the Agreement.

This report may not be transmitted, disclosed, referred to or relied upon by any person for any purposes,

nor may copies be delivered to any other person other than the Company, without CertiK’s prior written

consent in each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or

team. This report is not, nor should be considered, an indication of the economics or value of any

“product” or “asset” created by any team or project that contracts CertiK to perform a security

assessment. This report does not provide any warranty or guarantee regarding the absolute bug-free

nature of the technology analyzed, nor do they provide any indication of the technologies proprietors,

business, business model or legal compliance.

This report should not be used in any way to make decisions around investment or involvement with any

particular project. This report in no way provides investment advice, nor should be leveraged as investment

advice of any sort. This report represents an extensive assessing process intending to help our customers

increase the quality of their code while reducing the high level of risk presented by cryptographic tokens

and blockchain technology.

Blockchain technology and cryptographic assets present a high level of ongoing risk. CertiK’s position is

that each company and individual are responsible for their own due diligence and continuous security.

CertiK’s goal is to help reduce the attack vectors and the high level of variance associated with utilizing

new and consistently changing technologies, and in no way claims any guarantee of security or

functionality of the technology we agree to analyze.

The assessment services provided by CertiK is subject to dependencies and under continuing

development. You agree that your access and/or use, including but not limited to any services, reports,

and materials, will be at your sole risk on an as-is, where-is, and as-available basis. Cryptographic tokens

are emergent technologies and carry with them high levels of technical risk and uncertainty. The

assessment reports could include false positives, false negatives, and other unpredictable results. The

services may access, and depend upon, multiple layers of third-parties.

ALL SERVICES, THE LABELS, THE ASSESSMENT REPORT, WORK PRODUCT, OR OTHER MATERIALS,

OR ANY PRODUCTS OR RESULTS OF THE USE THEREOF ARE PROVIDED “AS IS” AND “AS

ShibaDoge Preliminary Comments



AVAILABLE” AND WITH ALL FAULTS AND DEFECTS WITHOUT WARRANTY OF ANY KIND. TO THE

MAXIMUM EXTENT PERMITTED UNDER APPLICABLE LAW, CERTIK HEREBY DISCLAIMS ALL

WARRANTIES, WHETHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE

SERVICES, ASSESSMENT REPORT, OR OTHER MATERIALS. WITHOUT LIMITING THE FOREGOING,

CERTIK SPECIFICALLY DISCLAIMS ALL IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A

PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT, AND ALL WARRANTIES ARISING FROM

COURSE OF DEALING, USAGE, OR TRADE PRACTICE. WITHOUT LIMITING THE FOREGOING, CERTIK

MAKES NO WARRANTY OF ANY KIND THAT THE SERVICES, THE LABELS, THE ASSESSMENT REPORT,

WORK PRODUCT, OR OTHER MATERIALS, OR ANY PRODUCTS OR RESULTS OF THE USE THEREOF,

WILL MEET CUSTOMER’S OR ANY OTHER PERSON’S REQUIREMENTS, ACHIEVE ANY INTENDED

RESULT, BE COMPATIBLE OR WORK WITH ANY SOFTWARE, SYSTEM, OR OTHER SERVICES, OR BE

SECURE, ACCURATE, COMPLETE, FREE OF HARMFUL CODE, OR ERROR-FREE. WITHOUT LIMITATION

TO THE FOREGOING, CERTIK PROVIDES NO WARRANTY OR UNDERTAKING, AND MAKES NO

REPRESENTATION OF ANY KIND THAT THE SERVICE WILL MEET CUSTOMER’S REQUIREMENTS,

ACHIEVE ANY INTENDED RESULTS, BE COMPATIBLE OR WORK WITH ANY OTHER SOFTWARE,

APPLICATIONS, SYSTEMS OR SERVICES, OPERATE WITHOUT INTERRUPTION, MEET ANY

PERFORMANCE OR RELIABILITY STANDARDS OR BE ERROR FREE OR THAT ANY ERRORS OR

DEFECTS CAN OR WILL BE CORRECTED.

WITHOUT LIMITING THE FOREGOING, NEITHER CERTIK NOR ANY OF CERTIK’S AGENTS MAKES ANY

REPRESENTATION OR WARRANTY OF ANY KIND, EXPRESS OR IMPLIED AS TO THE ACCURACY,

RELIABILITY, OR CURRENCY OF ANY INFORMATION OR CONTENT PROVIDED THROUGH THE

SERVICE. CERTIK WILL ASSUME NO LIABILITY OR RESPONSIBILITY FOR (I) ANY ERRORS, MISTAKES,

OR INACCURACIES OF CONTENT AND MATERIALS OR FOR ANY LOSS OR DAMAGE OF ANY KIND

INCURRED AS A RESULT OF THE USE OF ANY CONTENT, OR (II) ANY PERSONAL INJURY OR

PROPERTY DAMAGE, OF ANY NATURE WHATSOEVER, RESULTING FROM CUSTOMER’S ACCESS TO

OR USE OF THE SERVICES, ASSESSMENT REPORT, OR OTHER MATERIALS.

ALL THIRD-PARTY MATERIALS ARE PROVIDED “AS IS” AND ANY REPRESENTATION OR WARRANTY

OF OR CONCERNING ANY THIRD-PARTY MATERIALS IS STRICTLY BETWEEN CUSTOMER AND THE

THIRD-PARTY OWNER OR DISTRIBUTOR OF THE THIRD-PARTY MATERIALS.

THE SERVICES, ASSESSMENT REPORT, AND ANY OTHER MATERIALS HEREUNDER ARE SOLELY

PROVIDED TO CUSTOMER AND MAY NOT BE RELIED ON BY ANY OTHER PERSON OR FOR ANY

PURPOSE NOT SPECIFICALLY IDENTIFIED IN THIS AGREEMENT, NOR MAY COPIES BE DELIVERED TO,

ANY OTHER PERSON WITHOUT CERTIK’S PRIOR WRITTEN CONSENT IN EACH INSTANCE.

NO THIRD PARTY OR ANYONE ACTING ON BEHALF OF ANY THEREOF, SHALL BE A THIRD PARTY OR

OTHER BENEFICIARY OF SUCH SERVICES, ASSESSMENT REPORT, AND ANY ACCOMPANYING

ShibaDoge Preliminary Comments



MATERIALS AND NO SUCH THIRD PARTY SHALL HAVE ANY RIGHTS OF CONTRIBUTION AGAINST

CERTIK WITH RESPECT TO SUCH SERVICES, ASSESSMENT REPORT, AND ANY ACCOMPANYING

MATERIALS.

THE REPRESENTATIONS AND WARRANTIES OF CERTIK CONTAINED IN THIS AGREEMENT ARE

SOLELY FOR THE BENEFIT OF CUSTOMER. ACCORDINGLY, NO THIRD PARTY OR ANYONE ACTING

ON BEHALF OF ANY THEREOF, SHALL BE A THIRD PARTY OR OTHER BENEFICIARY OF SUCH

REPRESENTATIONS AND WARRANTIES AND NO SUCH THIRD PARTY SHALL HAVE ANY RIGHTS OF

CONTRIBUTION AGAINST CERTIK WITH RESPECT TO SUCH REPRESENTATIONS OR WARRANTIES OR

ANY MATTER SUBJECT TO OR RESULTING IN INDEMNIFICATION UNDER THIS AGREEMENT OR

OTHERWISE.

FOR AVOIDANCE OF DOUBT, THE SERVICES, INCLUDING ANY ASSOCIATED ASSESSMENT REPORTS

OR MATERIALS, SHALL NOT BE CONSIDERED OR RELIED UPON AS ANY FORM OF FINANCIAL, TAX,

LEGAL, REGULATORY, OR OTHER ADVICE.

ShibaDoge Preliminary Comments



About
Founded in 2017 by leading academics in the field of Computer Science from both Yale and Columbia

University, CertiK is a leading blockchain security company that serves to verify the security and

correctness of smart contracts and blockchain-based protocols. Through the utilization of our world-class

technical expertise, alongside our proprietary, innovative tech, we’re able to support the success of our

clients with best-in-class security, all whilst realizing our overarching vision; provable trust for all

throughout all facets of blockchain.

ShibaDoge Preliminary Comments


